Regulatory mechanism of length-dependent activation in skinned porcine ventricular muscle: role of thin filament cooperative activation in the Frank-Starling relation
نویسندگان
چکیده
Cardiac sarcomeres produce greater active force in response to stretch, forming the basis of the Frank-Starling mechanism of the heart. The purpose of this study was to provide the systematic understanding of length-dependent activation by investigating experimentally and mathematically how the thin filament "on-off" switching mechanism is involved in its regulation. Porcine left ventricular muscles were skinned, and force measurements were performed at short (1.9 µm) and long (2.3 µm) sarcomere lengths. We found that 3 mM MgADP increased Ca(2+) sensitivity of force and the rate of rise of active force, consistent with the increase in thin filament cooperative activation. MgADP attenuated length-dependent activation with and without thin filament reconstitution with the fast skeletal troponin complex (sTn). Conversely, 20 mM of inorganic phosphate (Pi) decreased Ca(2+) sensitivity of force and the rate of rise of active force, consistent with the decrease in thin filament cooperative activation. Pi enhanced length-dependent activation with and without sTn reconstitution. Linear regression analysis revealed that the magnitude of length-dependent activation was inversely correlated with the rate of rise of active force. These results were quantitatively simulated by a model that incorporates the Ca(2+)-dependent on-off switching of the thin filament state and interfilament lattice spacing modulation. Our model analysis revealed that the cooperativity of the thin filament on-off switching, but not the Ca(2+)-binding ability, determines the magnitude of the Frank-Starling effect. These findings demonstrate that the Frank-Starling relation is strongly influenced by thin filament cooperative activation.
منابع مشابه
Troponin and Titin Coordinately Regulate Length-dependent Activation in Skinned Porcine Ventricular Muscle
We investigated the molecular mechanism by which troponin (Tn) regulates the Frank-Starling mechanism of the heart. Quasi-complete reconstitution of thin filaments with rabbit fast skeletal Tn (sTn) attenuated length-dependent activation in skinned porcine left ventricular muscle, to a magnitude similar to that observed in rabbit fast skeletal muscle. The rate of force redevelopment increased u...
متن کاملDepartment of Cell Physiology
Depressed Frank-Starling mechanism in left ventricular muscle of the knock-in mouse model of dilated cardiomyopathy with troponin T deletion mutation ΔK210 We have demonstrated that the Frank-Starling mechanism is coordinately regulated in cardiac muscle via thin-filament “on-off” switching and titin-based changes in interfilament lattice spacing. In the present study, we investigated how the s...
متن کاملSimulation Analysis of Cardiac Muscle Isotonic Contractions at Different Pre- and Afterloads
Since regulation of cardiac muscle contraction is complex, many simulation studies have been conducted to systematically analyze regulatory mechanisms underlying the force-velocity relationship. However, past studies were performed with models lacking detailed thin filament activation despite its essential regulatory role. Here a novel cardiac muscle contraction model is presented that consider...
متن کاملMyosin MgADP release rate decreases at longer sarcomere length to prolong myosin attachment time in skinned rat myocardium.
Cardiac contractility increases as sarcomere length increases, suggesting that intrinsic molecular mechanisms underlie the Frank-Starling relationship to confer increased cardiac output with greater ventricular filling. The capacity of myosin to bind with actin and generate force in a muscle cell is Ca(2+) regulated by thin-filament proteins and spatially regulated by sarcomere length as thick-...
متن کاملLength dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank-Starling mechanism of the heart.
BACKGROUND At the basis of the Frank-Starling mechanism is the intrinsic ability of cardiac muscle to produce active tension in response to stretch. Titin, a giant filamentous molecule involved in passive tension development, is intimately associated with the thick filament in the sarcomere. Titin may therefore contribute to active tension development by modulating the thick filament structure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 136 شماره
صفحات -
تاریخ انتشار 2010